MIS-Boost: Multiple Instance Selection Boosting
نویسندگان
چکیده
In this paper, we present a new multiple instance learning (MIL) method, called MIS-Boost, which learns discriminative instance prototypes by explicit instance selection in a boosting framework. Unlike previous instance selection based MIL methods, we do not restrict the prototypes to a discrete set of training instances but allow them to take arbitrary values in the instance feature space. We also do not restrict the total number of prototypes and the number of selected-instances per bag; these quantities are completely data-driven. We show that MIS-Boost outperforms state-of-the-art MIL methods on a number of benchmark datasets. We also apply MIS-Boost to large-scale image classification, where we show that the automatically selected prototypes map to visually meaningful image regions.
منابع مشابه
Simultaneous Learning and Alignment: Multi-Instance and Multi-Pose Learning
IGERT 2 Electrical Engineering, California Institute of Technology [email protected] 3 Lab of Neuro Imaging University of California, Los Angeles [email protected] { } { } { } In object recognition in general and in face detection in particular, data alignment is necessary to achieve good classification results with certain statistical learning approaches such as Viola-Jones. Data can ...
متن کاملMultiple Instance Boosting for Object Detection
A good image object detection algorithm is accurate, fast, and does not require exact locations of objects in a training set. We can create such an object detector by taking the architecture of the Viola-Jones detector cascade and training it with a new variant of boosting that we call MILBoost. MILBoost uses cost functions from the Multiple Instance Learning literature combined with the AnyBoo...
متن کاملBoundary Detection Using F-Measure-, Filter- and Feature- (F3) Boost
In this work we propose a boosting-based approach to boundary detection that advances the current state-of-the-art. To achieve this we introduce the following novel ideas: (a) we use a training criterion that approximates the F-measure of the classifier, instead of the exponential loss that is commonly used in boosting. We optimize this criterion using Anyboost. (b) We deal with the ambiguous i...
متن کاملAn Expert Cognitive System Using Ada-boost Algorithm
Recent works on ensemble methods like Adaptive Boosting have been applied successfully in many problems. Ada-Boost algorithm running on a given weak learner several times on slightly altered data and combining the hypotheses in order to achieve higher accuracy than the weak learner. This paper presents an expert system that boosts the performance of an ensemble of classifiers. In, Boosting, a s...
متن کاملOnline Visual Tracking using Multiple Instance Learning with Instance Significance Estimation
Multiple Instance Learning (MIL) recently provides an appealing way to alleviate the drifting problem in visual tracking. Following the tracking-by-detection framework, an online MILBoost approach is developed that sequentially chooses weak classifiers by maximizing the bag likelihood. In this paper, we extend this idea towards incorporating the instance significance estimation into the online ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1109.2388 شماره
صفحات -
تاریخ انتشار 2011